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ABSTRACT

Tautomers are often disregarded in computer-aided molecular modeling applications.

Little is known about the different tautomeric states of a molecule and they are rarely

registered in chemical databases. Tautomeric forms of a molecule differ in shape,

functional groups, surface, and hydrogen-bonding pattern. Calculation of physical–

chemical properties and molecular descriptors differ from one tautomeric state to the

other as it is demonstrated with an example of the logP calculation, similarity index,

and the complementarity pattern to the targeted protein. Considering tautomery in

ligand–protein interactions therefore has a significant impact on the prediction of the

ligand binding using various docking techniques. This article points on hitherto

unaddressed issue of tautomerism in computer-aided drug design.
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1. INTRODUCTION

Numerous collections of chemical compounds are stored in electronic form and

various techniques are used to filter out compounds having the so-called ‘‘drug-like’’

properties (1,2). Using automatized molecular docking programs, small molecules are
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placed in a target protein and their affinity and binding modes may be predicted (3,4).

Recent advances in this domain are to consider the flexibility of ligands as well as of

protein amino-acid side chains, and to include the solvation–desolvation term in energy

calculation, which are described in several reviews (3–8). However, the issue of consider-

ing tautomers of small molecules both in chemical databases and in ligand–protein

interactions is commonly omitted. This paper refers to what is generally overlooked

when neglecting the existence of tautomers in drug-design. In the second section,

examples are given concerning the compounds in databases. In the third section examples

of some cases of tautomer–protein interaction are presented. The last part gives an outlook

pleading to include tautomers in molecular docking.

2. TAUTOMERS IN CHEMICAL DATABASES

Tautomerism by definition concerns all molecules which can readily interconvert into

isomers by transfer of a chemical group.a Tautomerism is very complex and is related to

several phenomena: different types of migrating groups [electrofuge (e.g., Hþ) or a

nucleofuge], cationotropic and anionotropic properties, valence tautomerism, zwitterionic

tautomerism, tautomerism related to migration of neutral groups in molecules, migration

of bonds or ring-chain tautomerism (9–11). As a subtype of cationotropy, the proton

migration (prototropy) is the most commonly known tautomeric phenomenon. It concerns

the movement of H atom between discrete sites of the ‘‘same’’ molecule (in contrast to

ionization or protonation where H atom leaves or comes from another molecule). Even if

only the case of prototropic tautomers is considered, the problem of tautomery in chemical

collections remains complex.

Compounds in chemical databases are stored in their canonical forms to which the

tautomeric or ionic form of a compound can be reduced using strongly defined chemical

rules. Many commercial and non-registered databases often contain pairs of tautomers

registered under different names and even prices (11,12). In a recently reported work,

Trepalin et al. estimated that up to 0.5% of commercially available compound collections

for bioscreening contain tautomers (11). Conversely, a large amount of tautomers are

missing. At the early stage of drug discovery this presence of paired structures and the

omission of tautomeric structures in chemical databases has an immense impact on

bioscreening. On the other hand, if a database is used for computer-aided lead finding,

enriching one’s database by energetically similar tautomers may significantly improve the

success rates in computer-aided drug design.

Actually the problems of tautomeric structures in chemical databases can be reduced

to (1) the search for tautomers and (2) the creation of missing tautomers.

1. Though in large compound registries such as Beilstein and CAS, tautomers can

be found in automated fashions using high-performance computational technologies

(11,13–15), tautomers in non-registered databases (if present) are difficult to be found.

aWe refer to the commonly drawn structure of substances as ‘‘compounds’’ and to rare tautomeric

form(s) of the compound as ‘‘tautomer(s).’’ Here ‘‘commonly drawn’’ means the form in which a

molecule was saved in a database.
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To solve this problem, Trepalin et al. (11) presented an algorithm and software allowing

exact structural search for tautomers in large corporate databases. This approach is based on

the generation of a canonical structure. In contrast to global chemical registry systems the

management of such a wide number of tasks is available for large corporate databases using

moderate computational requirements. In large collections (Beilstein, CAS), compounds

can be identified using a special tautomeric identification code with links to the original

patents and publications; however it only allows searching for a single compound entry.

Physico-chemical properties of tautomeric entries are described inconsistently and were

measured by different methods. In contrast, the proposed algorithm does not provide

information concerning the preferable tautomeric form, as the tautomeric equilibrium is a

function of a complex number of micro- and macro-environmental factors such as

concentration, temperature, pH or type of solvent.

2. There are several programs available which are able to create tautomers, however

for only one single compound at a time. Among them are listed the commercial

ACD=Tautomer, Cliff, Cactvs, MDL, or Chemosoft (16–20). The widely used

ACD=Tautomers proposes the tautomeric form, but not necessarily correct one (16).

There are several reports about tautomeric construction and search algorithms although in

most cases the algorithms are not explained. To contribute to automatic tautomerization of

databases, we have designed the program AGENT (21,22) whose algorithm is based on

general knowledge of legitimate chemical representations of tautomers. AGENT is able to

create tautomers from large compound databases and allows the user to specify an energy

threshold up to which a tautomer should be created. The relative tautomeric stabilities are

calculated semiempirically based on Gibbs free energies of formation by employing the

Molecular Orbital PACkage (MOPAC) (23). AGENT delivers an output file ready for

molecular docking (for more applications see Sec. 4) and thus represents a valuable tool

for ligand-based as well as for structure-based design.

2.1. Effect of Tautomers on Molecular Descriptors

One of the problems related to tautomeric representation is the prediction of molecular

descriptors; since the outcome of every calculation crucially depends on what tautomeric

form the calculation was based on. The following example shows the problem of log P

prediction if the ‘‘wrong’’ tautomer is used and it is ignored, which tautomer in octanol=water

partition may be favored. The molecules 4-hydroxypyridine (1) and 4-pyridone (2) (Sch. 1)

have a calculated CLOGP¼ 0.93 for 1, and CLOGP¼�1.31 for 2 (24)! [CLOGP values

varied based on method (in-house calculation), nevertheless, the difference between 1 and 2

remains huge]. However, in solution tautomer 4-pyridone (2) is the predominant molecule.

The experimentally measured log P for 4-hydroxypyridine is¼�1.3, which is very close to

the value calculated for 2. This clearly illustrates that obtaining the appropriate form of the

tautomer improves the quality of the property prediction. Usual log P ‘‘calculators’’ use

various methods of calculation based on molecular fragments and molecular properties

(25,26). The fragment-based method depends on the way the fragments are produced, their

number, size, and the training sets. Thus, missed or incorrectly selected tautomers for the

training set lead to wrong correlations and cause the log P prediction to fail (3).
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The second example concerns the similarity search index. Screening databases based

on similarity [topological descriptors, putative pharmacophores, and molecular fields

(27,28)] can be heavily influenced by tautomerism. An example is given for 4-nitrosophenol

(3) and [1,4]benzoquinone monooxime (4) (Sch. 2). The Tanimoto index (27,29) for 3 and 4

is very low (0.196) and the molecules are dissimilar even if one takes into account that

these are two tautomeric states of one and the same molecule. Hence, enriching databases

with tautomers will improve the quality of similarity-based clustering and diversity analysis.

The following example depicts how tautomerism can influence chemical behavior and

bioactivity of a molecule. Duarte et al. (30) reported the case of tetracyclines, a group of

broad-spectrum antibiotics. Tautomerism of tetracyclines has been subject to acid=base

properties and chemical behavior studies in different mediums (30). Semiempirical

calculations revealed that tetracyclines exist in equilibrium of different tautomers. Indeed,

considering four deprotonations, there are 64 different tautomers of tetracycline!

Tetracycline drawn in the ‘‘normal’’ way as used to describe its structure is depicted in

Sch. 3. Duarte et al. (30) concluded that the tetracyclines seem to be a sort of a chameleon

molecule with high capability to modifying itself (chemical bonds as well as geometry)

in response to the chemical context.

Assuming tetracycline would be the compound designated for designing an inhibitor,

the choice of only one tautomeric structure for molecular docking may lead to misleading

results. Furthermore, ignoring tautomers of tetracyclines can heavily bias structural search,

physico-chemical data prediction and interpretation (30).

The last example concerns the intramolecular H-bond due to the tautomeric inter-

change (31,32). López-Rodrigrı́guez et al. (32) studied the prototropic equilibrium in the

series of serotonin 5-HT4 receptor ligands. Two classes of benzimidazole derivatives were

analyzed to gain insight into the bioactive conformation of these novel ligands. Their

results from NMR and IR techniques and theoretical methods confirm the presence of

important intramolecular hydrogen bonds between the benzimidazole ring and adjacent

Scheme 1.

Scheme 2.
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side chain groups. These hydrogen bonds are possible also due to the tautomeric hydrogen

shift on benzimidazole ring. Thus, the molecular skeleton as well as the energy required

for conformational changes has the effect on adopting a bioactive conformation for ligand–

receptor interaction. Such structural studies [see also in Ref. (32)] provide important

insights to guide the design and synthesis of new compounds with predetermined

pharmacological activities.

3. TAUTOMERS IN LIGAND BINDING INTERACTION

The tautomeric equilibrium is influenced by a number of variables including

concentration, temperature, pressure, solvent type, and pH. Tautomers differ in heat and

energy of formation, proton affinities, dipole moments, and ionization potentials [see

examples in Refs. (33,34)]. There are numerous studies of tautomers in gas or aqueous

solution, however, little is known about tautomerism of ligands in the binding site of

proteins. Let us imagine a simple case of a transfer of one hydrogen atom on the same

molecule-ligand. As indicated in Sec. 2, tautomery can alter the skeleton of a given

molecule, which in principle can be seen as a new distinct molecule with different

complementarity to the target.

Thus, several questions arise: does a molecule bind preferably in one distinct tautomer?

Is the most stable tautomeric form in aqueous solution also the most stable form in the

active site of a protein? What can be the binding contribution of a ligand in its excited

tautomeric state in contrast to its ‘‘normal’’ tautomeric state, e.g., its low energy con-

figuration? How to treat a compound, whose proton shift induces different stereoisomery?

Compared to the large amount of data available on ligand-binding interactions, little is

known about the binding modes of distinct tautomers of a ligand molecule. One example

can be the evidence of tautomer-bound state reported by Brandstetter et al. (35).

8-barbiturate inhibitor (RO200-1770) was bound as its enol-isomer to the active site of

a matrix metalloproteinase (MMP-8) (Fig. 1). The lone pair oxygen O2 contributes to the

coordination of Zn2þ, while the hydrogen of O2�hydroxyl is involved in H-bond with

Glu198. Thus, it is the tautomeric enol form of the barbiturate that is favored by the protein

matrix over the keto form, which dominates in solution. The H atom on N1 is bound to the

carbonyl of Ala161 and the ketone O6 to the adjacent amides of Ala160 and Ala161.

Scheme 3.
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Different hydrophobic groups of phenyl and piperidyl rings involve the hydrophobic

subpockets of the binding site. In addition, 8-barbiturate inhibitor is in an enantiomeric

form (chiral center C5) which due to the hydrogen shifting may acquire another

enantiomeric or prochiral form (12).

The inhibitor of Ricin toxin A-chain (RTA) is another example. Ricin toxin A-chain is

a N-glucosidase that attacks ribosomal RNA at a highly conserved adenine residue. The

inhibitor is a pterin derivative and crystallographic studies show that the pterin-based ring

can bind to the active site of ricin (36). Pterins are able to form four tautomers (Fig. 2). Yan

et al. (36) demonstrated that it is a tautomer of pterin, which is not in the energetically

lowest form neither in the gas phase nor in aqueous solution (both calculated ab initio),

that interacts best with the enzyme. Previous crystallographic studies of the RTA

complexed with the inhibitor showed that pterin (3) (Fig. 2) is the preferred form,

which was confirmed by molecular modeling net interaction energy calculation (lowest

interaction energy¼�28.2 kcal=mol). Pterin (1) which was calculated to be the most

stable form in aqueous solution was predicted to have the net interaction energy of the

complex with the enzyme¼�21.5 kcal=mol (36).

Several other indications postulate tautomeric binding: pterin (3) is able to form two

more hydrogen bonds than pterin (1), one between the hydrogen of N1 and the backbone

carbonyl oxygen of the Gly121, and another one connecting the NH group of the Val81

Figure 1. Schematic representation of the interaction of 2-hydroxypyrimidinedione inhibitor with

the MMP-8 active site. The inhibitor binds in a tautomeric form which is unfavorable in aqueous

solution. Key: * annotates a stereochemical center that can switch from R to S and vice-versa or

become pseudocenter depending on the hydrogen shift. Dashed lines represent H-bonds.
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backbone with N3 (Fig. 3). The distances between the oxygen of Gly121 and N1 and N12

of pterin are close, which corresponds to strong hydrogen bonds contributing to the

stability of the RTA–pterin (3) complex. In addition, Yan et al. postulated that the RTA first

recognizes pterin (1) followed by the proton shift from N3 to N1, thus generating the pterin

(3) complex in situ (Fig. 3).

Figure 2. Four tautomers of pterin. Which of them is the preferred tautomer-bound form?

Figure 3. Interactions between RTA and pterin (3) tautomer. Dashed lines represent H-bonds.
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The general view is that the binding environment within a protein is a very specific

one. It is different from the environment of the aqueous solution or the vacuum. Apolar or

polar, acidic or basic side-chains create local pHs, shift their pK values and subsequently

influence the functional groups of the ligand. Presence of a ligand, metal cations, and water

also influence the pH (and the pK) conditions in close proximity of amino acid side-chains

and the process of catalysis (37). In such a context, ligands may be ionized or can achieve

its excited tautomeric state.

Many enzymes of therapeutical relevance, such as nucleoside kinases, telomerases or

DNA-polymerases, are able to accommodate purine or pyrimidine derivatives in their

active sites. Hence, nucleic acid bases are molecules with well-known occurrence of

tautomery. For example there is the phenomenon of tautomer base mispairing in the DNA-

strand as a source of DNA replication errors (38,39). Nucleobases reveal always one

tautomer, which are for stability reasons incorporated into the nucleic acid. The ability of

pyrimidine and purine structures to form hydrogen bonds is linked intimately with the

potential existence of tautomeric structures. Similarly, the phenomenon of tautomerism can

be observed on histamines and in proteins on histidine side chains (40,41).

Tautomers have different molecular shapes and different hydrogen-bond donor and

acceptor properties resulting in a significant impact on molecular recognition. As it was

shown in this section, tautomers are able to bind to the active site of a protein. Nevertheless

up to now, tautomers have been neglected, even omitted in automated molecular docking.

4. INCLUDING TAUTOMERS IN MOLECULAR

DOCKING APPLICATIONS

Recent advances in molecular docking occurred in various fields such as ligand–

protein flexibility, scoring function or automatized processing (6,8,42,43). However, little

progress has been achieved in the simulation of the immediate environment within the

active site. This would demand predictions of terms such as solvation-desolvation,

temperature of the system, microenvironment of the active site in proximity of the ligand

and protein side-chains, pH, ionization, protonation=deprotonation, and tautomerism of

ligands upon binding.

In the field of drug design, virtual screening of 3D-structural chemical databases

became a major discipline. Most algorithms accept chemical structures as they are

imported by the user from databases without tautomers. Thus, including tautomers

could be seen as enhancing the number of degrees of freedom to be considered

by docking programs. It can be a fast and relatively precise method to cover for

incertitudes caused by the variability of the effective pK in different parts of a receptor

binding site.

Including tautomerism in virtual screening procedures should improve the reliability

of the screening due to the following reasons: (i) it enlarges the chemical space covered by

the database and (ii) it takes into account that a compound can bind in its tautomeric state,

which raises the chance of detecting a hit. Hence, this approach can be considered as a

large improvement of the virtual screening procedure itself. Subsequent selection of the

best-ranked compounds or tautomers may also reveal new characteristics of ligand

binding. If a docked compound is stabilized in its tautomeric state in a given binding
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site environment, this can lead to the recognition of a putative ligand, which would not be

detected using classical screening protocols.

Few investigations have addressed this topic. ProtoPlex, a program developed

by Pearlmann et al. generates all protomers of drug-sized compounds (tautomer and=or

protonation state) and yields false negatives if the protomer in the screening library is not

preferred by the receptor (44). Similarly, Sadowski et al. addressed the issue of tautomery

together with protonated molecules using a tautomer and protonation preprocessor for

virtual screening (45). In our group, we have used the generator of tautomers AGENT

(in-house program) to generate a database of energetically probable tautomers, which in

parallel with the database of compounds can be docked to the target of interest (22,46).

Thousand nucleobase analogs enriched by tautomers have been screened on viral

thymidine kinase known for its large acceptance of nucleobase derivatives. Subsequently,

the top scored compounds and tautomers were compared to each other and revealed new

characteristics of the ligand binding (47). It can be postulated that when the active site

favors the tautomeric form over the compound, this could reveal new lead structures,

which would be omitted in a classical, tautomerism-disregarded screening. Moreover,

finding tautomeric hits may initiate new case studies of tautomery-dependent ligand–

protein interaction.
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